Markov Framework for Power Wheelchair Driving

Tim Yang¹⁻³ Seth Hutchinson⁴⁻⁶ Yih-Kuen Jan¹⁻³

Rehabilitation Engineering Lab, ²Kinesiology & Community Health, ³Computational Science & Engineering, ⁴Coordinated Science Lab, ⁵Beckman Institute, ⁶Electrical & Computer Engineering

Purpose

- Powered mobility assessments are needed to ensure the safety of potential users and their surroundings
- Existing assessments are either subjective or descriptive
- To better characterize the <u>dynamic</u>, <u>stochastic</u>, and <u>nonlinear</u> nature of human driving (Nechyba & Xu, 1997), our goal was **to develop a quantitative framework for powered mobility**

Approach

<u>Driving</u>	<u>Markov Model</u>	<u>Methodology</u>
Position	$S = \{s_0, s_1, \dots, s_n\}$	Location nodes represented as a 3-branch, 5-depth tree
Direction	$A(s) = \frac{\text{Actions}}{\{a_0, a_1, \dots, a_k\}}$	Heading vectors based on wheel velocity and holonomic differential steering
Uncertainty	$\frac{\text{Transitions}}{P(s' s,a)}$	Human motor uncertainty simulated by a reference model with 20% variability
Environment	$\frac{Rewards}{R(s)}$	Infrared depth imaging captured by a retrofitted Xbox 360 Kinect sensor

- We constructed a tree-based **Markov decision process** (MDP)
- We assessed 2 able-bodied volunteers driving a Permobil C400 power wheelchair (custom retrofitted with a Kinect and Arduino)

Heading Vectors \mapsto Actions A(s)

nd place

- **Joystick excursions** were intercepted with an Arduino
- Each excursion coordinate (x, y) was mapped into a wheel velocity tuple $\langle v_L, v_R \rangle$

- Movement was calculated based on differential steering
- Each **heading vector** angle θ was computed from $\langle v_L, v_R \rangle$ via rigid body mechanics

Environment \mapsto Rewards R(s)

- Each depth frame was transformed into a point cloud
- Obstacles were mapped by transposing the state tree onto the point cloud

- $R(s) = \lambda \sqrt{(x_{max} |s_x|)^2 + (y_{max} |s_y|)^2}$
- Obstacles were penalized with negative rewards (λ < 0)
- \blacksquare R(s) was scaled for **proximity** and **directness of path** to the root node (o, o)

Expected Utilities $E(t) \mapsto$ Assessment

- Suboptimal decisions ($E^+ \neq E^*$) were quantified as a **risk index** I(t)
- $I(t) = |E^+(t) E^*(t)| \times |E^*(t)|^{-1}$, where $E^+(t)$ and $E^*(t)$ were the observed and optimal expected utilities

Future Work

- Improve context awareness of R(s)
- Add <u>blob classification</u> to account for both obstacles and objectives

- **Experimentally model** $P(s'|s_0, a)$
- Use individualized transition functions for clinical <u>training</u> and real-time assistance

Computational Science and Engineering 2014 Annual Meeting