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Purpose

a

Common accidents with
powered mobility include
running into objectsa as
well as people (Evans et al,
2007) b

c

Common causes include
severe visualb and motorc

impairments, preventing
functional steering in 40%
of users (Fehr et al, 2000)

Adapted from http://www.ada.gov/

∎ Powered mobility assessments are needed to ensure the safety
of potential users and their surroundings

∎ Existing assessments are either subjective or descriptive

∎ To better characterize the dyyyyynaaaaamiccccc, ssssstttttoooooccccchaaaaasssssttttticcccc, and nooooonlineeeeeaaaaar
nature of human driving (Nechyba & Xu, 1997), our goal was
to develop a quantitative framework for poweredmobility

Approach

Driving Markov Model Methodology

Position
States

S = {s0, s1, . . . , sn}
Location nodes
represented as a

3-branch, 5-depth tree

Direction
Actions

A(s) = {a0, a1, . . . , ak}
Heading vectors based on

wheel velocity and holonomic
di�erential steering

Uncertainty Transitions
P(s′∣s, a)

Human motor uncertainty
simulated by a reference

model with 20% variability

Environment
Rewards
R(s)

Infrared depth imaging
captured by a retro�tted
Xbox 360 Kinect sensor

∎ We constructed a tree-basedMarkov decision process (MDP)

∎ We assessed 2 able-bodied volunteers driving a Permobil C400
power wheelchair (custom retro�tted with a Kinect and Arduino)
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∎ Joystick excursionswere
intercepted with an Arduino

∎ Each excursion coordinate
(x, y)was mapped into a
wheel velocity tuple ⟪vL, vR⟫

∎ Movement was calculated
based on di�erential steering

∎ Each heading vector angle θ
was computed from ⟪vL, vR⟫
via rigid body mechanics

Environment↦ Rewards R(s)

R(s) = λ
√

(xmax − ∣sx ∣)2 + (ymax − ∣sy ∣)2

∎ Each depth frame was
transformed into a point cloud

∎ Obstacles weremapped by
transposing the state tree onto
the point cloud

∎ Obstacles were penalized with
negative rewards (λ < 0)

∎ R(s)was scaled for proximity
and directness of path to the
root node (0,0)

Expected Utilities E(t)↦ Assessment

E∗≈−20.2 E+≈−32.1 E∗≈−20.1 E+≈−26.7 E∗≈−19.8 E+≈−20.4
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∎ Suboptimal decisions (E+≠ E∗) were quanti�ed as a risk index I(t)
∎ I(t)= ∣E+(t) − E∗(t)∣ × ∣E∗(t)∣−1, where E+(t) and E∗(t)were the

observed and optimal expected utilities

Future Work
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Objective → λDesirability = ?

Obstacle → λSeverity = ?

s0

s1

s2
s3

P(s0 ∣s0,a0) = ?

P(s0 ∣s0,a1) = ?

P(s0 ∣s0,a2) = ?

P(s1 ∣s0,a0) = ?

P(s1 ∣s0,a1) = ?

⋯

P(s3 ∣s0,a2) = ?

∎ Improve context awareness
of R(s)

∎ Add blob classi�cation to
account for both obstacles
aaaaandddddooooobbbbbjjjjjeeeeeccccctttttiveeeeesssss

∎ Experimentally model
P(s′∣s0,a)

∎ Use individualized transition
functions for clinical training
and real-time assistance
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