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Abstract—Power wheelchair driving entails safety risks,
including tips and collisions. Thus, driving assessments are im-
portant to safeguard both drivers and their surroundings. How-
ever, current driving assessments are deterministic, whereas
driving itself is stochastic due to individual and environmental
uncertainty. Moreover, disabilities magnify this uncertainty. In
this study, a robotic wheelchair was used for a novel function:
stochastic assessment of PWC driving. The Robotic Individu-
alized Driving Evaluation (RIDE) is a stochastic assessment
that contrasts with deterministic assessments by accounting
for individual differences via assessment profiles. The robotic
wheelchair acquired the information needed for the stochastic
model, and a probabilistic risk score was formulated. The
purpose of this preliminary study was to test the effect of
assessment profiles within and between driving tasks. Within
tasks, there were significant differences in RIDE risk between
the profiles. Between tasks, there were significant differences in
the new stochastic RIDE metrics but not in the conventional
deterministic metrics. Results demonstrated potential for this
novel use of robotic wheelchairs to support personalized assess-
ment and training in power mobility rehabilitation.

I. INTRODUCTION

Power wheelchairs (PWCs) increase autonomy in people
with severe mobility impairments [1] insofar as the user can
drive effectively. However, functional steering is “extremely
difficult” for many PWC users [2]. Day-to-day usage entails
safety risks, including tips and collisions [3]. Thus, PWC
assessments are used to ensure the safety of both the users
and their surroundings. Clinicians perform a comprehensive
evaluation of the client’s personal and environmental factors.
This iterative process of in-clinic evaluations and at-home
trials [4] includes clinical ratings and measurements.

Clinical ratings target various levels of the International
Classification of Functioning, Disability, and Health [5]
(e.g., function [6], activity [7], participation [8]-[10], and
environment [11], [12]). Clinical measurements target either
wheelchair trajectory (e.g., driving duration, driving error,
driving variability, driving speed, and driving acceleration) or
human performance (e.g., information processing capacity,
reaction time, fatigue, target accuracy, joystick activations,
and joystick directional variability) or both [13]-[17].

However, driving contains complexities that are difficult
to formalize with ratings and measurements. Driving is a
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dynamic, stochastic, and nonlinear process [18] involving
real-time adaptation mediated by personal and environmen-
tal factors. Individual differences in motor skill, cognitive
skill, visual acuity, etc., inject uncertainty into the driving
process, and disabilities magnify that uncertainty which in
turn influences the optimal driving strategy. For example,
whereas an unimpaired driver might choose the most efficient
trajectory in a given scenario, an impaired driver (i.e., with
higher uncertainty in driving control) might instead choose a
less efficient trajectory in favor of more safety. By measure-
ments, the impaired driver chose a worse plan (e.g., longer
driving time). In practice, they demonstrated good decision-
making by accounting for their impairment. These contextual
driving decisions are difficult to formalize with ratings and
measurements. While a rating may account for some context,
it lacks in objectivity and granularity. While a measurement
may be objective and granular, it lacks in context.

Stochastic analysis can complement measurement statis-
tics by objectively accounting for contextual differences.
A stochastic model can balance task objectives against
personal and environmental factors [19]. In this study, a
robotic wheelchair was used for a novel function: stochastic
assessment of PWC driving. The Robotic Individualized
Driving Evaluation (RIDE) was developed on the basis
of a Markov model and was configurable via assessment
profiles, represented internally as Markov transition models.
The robotic wheelchair acquired the information needed for
the model, and a probabilistic risk score was formulated. In
practice, a clinician would use their expertise to determine
a suitable RIDE profile befitting their client’s individual
differences. The resulting RIDE score would then represent
a personalized measure of driving risk. In this preliminary
study, the purpose was to test the effect of RIDE profiles
within and between driving tasks. It was hypothesized that:

1) within tasks, there will be significant differences in
stochastic metrics between assessment profiles; and

2) between tasks, there will be significant differences in
stochastic metrics but not deterministic metrics.

TABLE I
MARKOV DECISION PROCESS (MDP) FORMULATION

Driving Implementation
State ses Position Directed acyclic graph
Action a € A(s) Heading Rigid body dynamics
Reward R(s) Environment  Infrared depth point cloud
Transition P(s’|s,a)  Uncertainty Assessment profiles
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Fig. 1. Markov decision process components. (a) The action space consists of left-, for-, and rightward actions. (b) The state space is formed by propagating
actions into a 3-branch, 6-depth directed acyclic graph. (c) The state graph is overlaid on a point cloud with two obstacles. (d) The point cloud is further
overlaid on a Markov reward function that penalizes obstacles based on proximity and directness of path.

II. SYSTEM DESIGN

The RIDE algorithm was based on a first-order Markov
decision process (MDP) [20], consisting of a set of states
(i.e., wheelchair positions), set of actions (i.e., wheelchair
headings), probability distribution of movement transitions
(i.e., movement uncertainty), and reward function (i.e., en-
vironmental cues) (Table I). These components were used
to model PWC driving as a sequence of MDP decisions,
accounting for differences in driving skill and environmental
context. Driving risk was determined by contrasting the
driver’s observed actions with the MDP’s computed actions.

A C300 power wheelchair (Permobil, Inc., Lebanon, TN)
was robotized, although computational navigation functional-
ity was not used; the participants retained full driving control,
as the purpose of the study was to assess their own driving.
The robotic wheelchair facilitated the capture and extraction
of information needed for the MDP—i.e., the driver’s actions
and the environment’s context.

To capture the driver’s actions, an Arduino Mega 2560 R3
(Smart Projects SRL, Strambino, Italy) was interfaced with
the joystick’s microcontroller board to intercept FORE_AFT
and LEFT_RIGHT voltages. The model’s action space A(s)
(Fig. la) consisted of three discrete actions: left (—16°),
forward (0°), and right (16°). These actions were propagated
into the state space S (Fig. 1b): a directed acyclic graph with
three branches and six levels. To determine the driver’s action
a € A(s) in a given state s, the PWC heading was computed.
The turning of a PWC is actuated via differential steering, in
which new headings are based on relative wheel torques. For
example, the PWC actuates a right turn by increasing the left
wheel’s velocity relative to the right wheel’s velocity. In this
study, joystick excursions were used to ascertain the wheel
velocities, which in turn were used to compute the PWC
headings:

Joystick Wheel PWC MDP
excursion +— velocities +~— heading — action
(r.0) (Vi,Vg) 0 a € A(s)

Joystick excursions fell within eight regions, each with its
own excursion-velocity mapping. The regions were bounded
by the polar angles 0, ¢1, 5, ™ — ¢1, T, T + Pa, 37”, and
—¢o (Fig. 2a). The boundary angles and output velocities
were parameterized by five constants, which were derived
from empirical testing on the standard speed setting of the

indoor driving profile. The linear velocities were computed
from angular velocities based on the PWC’s wheel radius.
Using the resultant wheel velocity tuple, the PWC heading
6 was computed via rigid body dynamics (Fig. 2b),
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where v, and vy were the wheel velocities, A was the axle
length, and f; was the sampling frequency.

To capture the environment’s context, the headrest was
retrofitted with a Kinect (Microsoft Corporation, Redmond,
WA), containing a depth sensor with 11-bit depth, 57°
horizontal field of view, 43° vertical field of view, and 4m
radial distance. Each depth image was transformed into a
point cloud of obstacles onto which the state graph was
overlaid (Fig. 1c). The reward function R(s) (Fig. 1d) was
then used to determine the reward value at each graph node.
Obstacle nodes and their descendent nodes were penalized
inversely by the distance from the driver,

R(s) = AV (@max — 25])? + (Ymax — [ys])?,

where x; and y; were the coordinates of state s, and \ was
a negative penalty coefficient. Thus, R(s) was scaled both
for proximity and directness of path to the driver.

The joystick data and depth images were acquired simulta-
neously using MATLAB (The MathWorks, Inc., Natick, MA)
at sampling frequencies of 2 Hz and 10 Hz, respectively.
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Fig. 2. Heading derivation. (a) Wheel velocities were first extracted from
joystick excursions using a microcontroller board. (b) Wheelchair heading
was then computed from the wheel velocities using rigid body dynamics.
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The four assessment profiles for the stochastic model. The profiles were represented internally as Markov transition models. (a) The unimpaired

profile contained 2% overall variability. (b)—(d) The bilateral and unilateral assessment profiles each contained 10% overall variability.

III. EXPERIMENT DESIGN
A. Protocol

The experiment was conducted in a university building
hallway. Two driving tasks were defined per [7]:

1) turn left 90° while moving forward and
2) turn right 90° while moving forward.

To prevent interference from passersby, the hallway was
cordoned off for the duration of the protocol. Three healthy
participants completed the experiment. The impairment level
of the participants was not relevant, as the purpose of the
study in this preliminary stage was to test the effect of
assessment profiles versus tasks. Each participant was a right-
handed joystick user and was given time to acclimate to the
wheelchair and joystick before performing the experimental
task. Each task was repeated twice with brief resting peri-
ods in between. The joystick data and depth images were
extracted from the robotic wheelchair for offline analysis.

B. Data Analysis

For each driving trial, two deterministic and four stochas-
tic metrics were analyzed. The deterministic metrics in-
cluded driving duration and joystick variability per [15]. The
stochastic metrics included four RIDE risk scores (i.e., one

per profile) computed from the Markov model.

Markov decisions were optimized into a policy of actions
maximizing the driver’s expected utility according to the
Bellman equation,

/ /

U(s) = R(s) —l—’ylaneaicsé P(s'|s,a)U(s"), 0<y<1l (3)
where U (s) was the utility value for state s, R(s) was the
reward for state s, v was a discount factor, and P(s'|s,a)
was the transition model for transitioning to state s’ given
the current state s and action a.

For PWC driving, a transition model with higher or lower
variability suggests a driver with stronger or milder impair-
ments, respectively. This transition model P(s’|s,a) can be
viewed as an assessment profile. In practice, a healthcare
provider could use their clinical expertise to determine a
suitable profile befitting their client’s individual differences.
In this study, four basic profiles were used (Fig. 3) as a
preliminary test of the system:

1) unimpaired (1% left and 1% right variability),

2) bilateral (5% left an 5% right variability),
3) unilateral-left (9% left and 1% right variability), and
4) unilateral-right (1% left and 9% right variability).

For each profile, an optimal policy was computed numeri-
cally via backward induction [21].

For each optimal policy, a RIDE risk score was formu-
lated under the rationale that suboptimal decisions are not
inherently risky and do not necessarily preclude functional
driving. Mathematically, a deviation simply means that the
driver can no longer achieve the highest possible utility.
Functionally, the impact could range from trivial to substan-
tial. The severity of a deviation can be quantified in terms
of the expected utility difference. Thus, at the root node of
each graph, the observed actions and computed actions were
compared by their respective expected utilities. RIDE risk I"
was defined as the inverse hyperbolic sine (IHS) [22] of the
relative error,

U(t)—U(t)
BTN ) )

[(t) = sinh™* (
where U(t) and U(t) were the observed and computed
utilities, respectively, at time ¢. Thus, when the observed
action matched the computed action at a given time ¢, the
RIDE risk evaluated to zero; otherwise, riskier mismatches
evaluated to higher values. The IHS transformation was
chosen to dampen the effect of runaway scores (e.g., 2,000%
risk is not pragmatically different from 200% risk).

Data analysis was performed in GNU Octave.

C. Statistical Analysis

RIDE risk was normalized to the interval [0, 1]. Based on
the Shapiro-Wilk test and quantile-quantile visualization, it
was determined that the data were not normally distributed.
Thus, nonparametric comparisons were used. All tests were
conducted using o = .05.

1) Within Tasks: RIDE risk was compared between the
four assessment profiles using the Kruskal-Wallis one-way
analysis of variance. Given a significant difference across
profiles, the Conover-Iman test with Holm-Bonferroni cor-
rection was used for post hoc pairwise comparisons.

2) Between Tasks: RIDE risk, driving durations, and joy-
stick variabilities were compared using the Wilcoxon signed-
rank test.



RIDE Risk

0.75 1.00

1

*k*%

] |
— —

T b }

0.00 0.25 0.50
o Unimpaired ——| | —
2 Bilateral +————] |
W Unilateral Left —— [ —
v Unilateral Right
(a) Left Turn
o Unimpaired +——] | —
2 Bilateral ] [ —
% Unilateral Left
& Unilateral Right ——] [ —
(b) Right Turn
Fig. 4.

Intra-task comparisons of driving risk across assessment profiles. (a) For the left turn task, risk from the unilateral-right profile was significantly

higher than that of the unimpaired, bilateral, and unilateral-left profiles. Other differences were not significant. (b) For the right turn task, risk from the
unilateral-left profile was significantly higher than that of the unimpaired, bilateral, and unilateral-right profiles. Other differences were not significant.
Abbreviations: * (p < .05), ** (p < .01), *** (p < .001), RIDE (Robotic Individualized Driving Evaluation)

Statistical analysis was performed in Python using the
pandas, scipy, and scikit—-posthocs libraries.

IV. RESULTS

A. Intra-Task

1) Left Turn: There was a significant difference in RIDE
risk across the four assessment profiles (p = .003). Post
hoc comparisons (Fig. 4a) indicated that the RIDE risk
from the unilateral-right assessment profile (median[IQR],
0.75[0.64 — 0.94]) was significantly higher than that of the
unimpaired profile (0.29[0.06 — 0.38], p < .001), bilateral
profile (0.49[0.13 — 0.54], p = .021), and unilateral-left
profile (0.29]0.09 — 0.41], p = .002). Other differences were
not significant.

2) Right Turn: There was a significant difference in RIDE
risk across the four assessment profiles (p = .008). Post
hoc comparisons (Fig. 4b) indicated that the RIDE risk
from the unilateral-left assessment profile (0.87[0.65—0.97])
was significantly higher than that of the unimpaired profile
(0.28[0.06 — 0.37], p = .003), bilateral profile (0.17[0.04 —
0.29], p = .001), and unilateral-right profile (0.17[0.08 —
0.35], p = .003). Other differences were not significant.

B. Inter-Task

1) Stochastic: For the unilateral-left assessment profile,
there was a significant difference in RIDE risk between
the left turn task (0.29[0.09 — 0.41]) and right turn task
(0.87[0.65 — 0.97], p = .031). For the unilateral-right as-
sessment profile, there was a significant difference in RIDE
risk between the left turn task (0.75[0.64 — 0.94]) and right
turn task (0.17[0.08 — 0.35], p = .031). For the unimpaired
and bilateral assessment profiles, there were no significant
differences in RIDE risk between tasks (Table II).

2) Deterministic: There were no significant differences in
either driving duration or joystick variability between tasks
(Table 1II).

V. DISCUSSION

In this paper, the design and preliminary results of RIDE
are presented. RIDE uses a robotic wheelchair to assess PWC
driving stochastically. In integrating context from the driver
and environment, this stochastic approach complements de-
terministic assessments by providing a more standardized
method for personalization. Individual differences are con-
figurable via the model’s assessment profiles.

Clinical profiles are routinely used for diagnosis, progno-
sis, and treatment throughout the healthcare industry, from
internal medicine [23] to sports medicine [24] to reha-
bilitation medicine [25]. Clinical decisions are made with
a breadth of information, including client demographics,
biomedical measurements, clinical ratings, etc. Healthcare
providers develop clinical recommendations through the lens
of the client’s profile. In this study, the profile-based design
mirrors this approach. RIDE computes risk through the lens
of a given assessment profile. It was hypothesized that PWC
driving actions would yield significantly different RIDE risk
scores as viewed through different assessment profiles.

Within tasks, experimental testing indeed revealed sig-
nificant differences between certain profiles. For a given
directional task, significantly higher RIDE risk was observed
under the contradirectional profile but not the ipsidirectional
profile. This result was likely due to the turning strategy
adopted by the participants (Fig. 5). In preparing for a turn,
they tended to anticipate the turn by executing a wider arc—
bringing themselves closer to the contradirectional wall—
prior to executing the turn. Under most circumstances (i.e.,
bilateral, ipsidirectional, or no impairment), this would be
a reasonable driving plan and would not cause significant



TABLE I
INTER-TASK COMPARISONS FOR STOCHASTIC AND DETERMINISTIC METRICS

Metric Profile Left Turn Task Right Turn Task
Mdn (IQR) Mdn (IQR) »

Unimpaired 029 (0.06-0.38) 028 (0.06-0.37) 844
) . Bilateral 049  (0.13-0.54) 0.17  (0.04-0.29) 219
Stochastic RIDE Risk Unilateral Left 029 (0.09-0.41) 0.87 (0.65-0.97) 031%
Unilateral Right 075 (0.64-0.94) 0.17  (0.08-0.35) 031%
Deterministic Driving Duration (s) N/A 9.00 (8.25-10.50) 950 (9.00-10.00) 655
Joystick Variability °)  N/A 702 (6.79-8.62) 711 (5.28-9.08) 844

Abbreviations: * (p < .05), IQR (interquartile range), Mdn (median), N/A (not applicable), RIDE (Robotic Individualized Driving Evaluation)

risk. However, under a contradirectional assessment profile,
this wider trajectory (Fig. S5a) represents a significantly
increased risk of colliding with the contradirectional wall.
The stochastic model developed in this study accounted for
this context via the given assessment profile. If the driver had
instead taken a more direct line to the corner (Fig. 5b), the
ipsidirectional profile would instead have yielded the highest
RIDE risk. This profile-based approach enables clinicians
to perform standardized assessments that account for im-
pairment context. Furthermore, the robotic assessment could
be performed in clients’ homes and communities to provide
targeted risk assessments of their daily environments. Thus,
RIDE could serve as a clinical decision support tool to assess
clients’ needs within individual and environmental contexts.

Stochastic models can leverage context to extract more
meaning from deterministic metrics. However, stochastic
assessment has yet to be used for power mobility, although
it has been used in the related field of power seating [26].
In conventional wheelchair seating practice, seating pres-
sures are measured to screen for pressure ulcer risk. Since
conclusive thresholds for pressure ulcer formation have yet
to be determined [27], stochastic gradient descent has been
used to predict pressure ulcer risk by integrating interface
pressure measurements with clinical context (i.e., pressure
ulcer history) [26]. In the present study, stochastic modeling
was also used to assess risk via contextual profiles. It was
hypothesized that the deterministic metrics would not detect
significant differences between PWC driving tasks, whereas
the stochastic RIDE model—given context via assessment
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A representative trajectory from one driving trial, in which the participant
anticipated the turn by executing a contradirectional arc. (b) A hypothetical
trajectory, in which the driver takes a more direct path around the corner.

profiles—would detect significant differences.

Between tasks, experimental testing indeed revealed sig-
nificant differences in stochastic metrics but not determin-
istic ones. This result highlighted the contextless nature
of traditional measurements. For example, a more direct
turning trajectory (Fig. 5b) may not be ideal in all contexts,
despite being superior by deterministic measurements (e.g.,
lower driving duration and joystick variability). Consider a
PWC user, Alice, with advanced cervical dystonia. Her chin
tends to point down toward her right shoulder, causing her
field of vision to be rotated rightward. Even with seating
adjustments and physical therapy, her postural condition
will unlikely resolve in the near future. Thus, her reduced
leftward perception constitutes a unilateral-left impairment.
For Alice, the more direct trajectory (Fig. 5b) represents
a significantly increased risk of collision with the corner.
The more roundabout trajectory (Fig. 5a)—despite its higher
driving duration and joystick variability—would represent a
more optimal decision. The RIDE model would account for
Alice’s condition and could complement deterministic met-
rics to provide a more contextual, client-centered assessment.

Beyond assessment, training is needed to address identified
barriers. For example, trainees of the Wheelchair Skills
Training Program have seen improvements in PWC driving
performance [28]. However, the improvements were modest
and transient. To boost efficacy, robotics-based stochastic
assessment may be able to identify personalized hotspots
for more targeted training. This computational approach
could also reveal hidden risks. For example, for wheelchair
seating, stochastic modeling revealed potential underappre-
ciation of the coccygeal region in predicting pressure ulcer
risk [26]. For PWC driving, stochastic modeling could reveal
analogous insights on previously underappreciated risks and
barriers. Furthermore, because RIDE leverages a robotic
wheelchair, the training could potentially occur remotely.
Robotic assessment could allow PWC users to continue self-
paced training at home so that skill improvements could be
better retained over time.

There were limitations to this study. In terms of system
design, all obstacles were treated equally. Future work should
distinguish between different obstacle types and their respec-
tive threat levels. In terms of experiment design, the sample
size was small. Future work should include more participants
so that more diverse driving strategies and trajectories can be
observed. Additionally, the study participants did not present



with disabilities since this was a preliminary test of the
robotic system and assessment profiles. Future work will
assess the drivers, so the sample should include people with
disabilities. Lastly, only two driving tasks were included.
Future work should include a higher quantity and variety
of tasks, especially to test the bilateral and ipsidirectional
profiles.

VI. CONCLUSION

The RIDE model brings a personalized approach to power
mobility clinical practice. It represents a novel use of
robotic wheelchairs: stochastic assessment of PWC driving.
In contrast to deterministic metrics, this stochastic approach
accounts for individual and environmental differences. Clin-
icians can use configurable RIDE profiles to perform stan-
dardized assessments that account for impairment context
and, in turn, provide more targeted training to enhance
functional independence in PWC users.
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